Python for Programmers: with Big Data and Artificial Intelligence Case Studies

Python for Programmers: with Big Data and Artificial Intelligence Case Studies

Product details

___________________________________

  • Full Title: Python for Programmers: with Big Data and Artificial Intelligence Case Studies
  • Autor: Harvey Deitel
  • Print Length: 640 pages
  • Publisher: Pearson Higher Ed
  • Publication Date: April 1, 2019
  • Language: English
  • ISBN-10: 0135224330
  • ISBN-13: 978-0135224335
  • Download File Format | Size: pdf | 32,09 Mb

 

Download Link

___________________________________
 

>>> Download <<<

Plese Buy Premium From My Download Link, To Support Me & Download all Books with MaX SPeeD!

 

Description

___________________________________

The professional programmer’s Deitel guide to Pythonwith introductory artificial intelligence case studies

Written for programmers with a background in another high-level language, this book uses hands-on instruction to teach today’s most compelling, leading-edge computing technologies and programming in Python–one of the world’s most popular and fastest-growing languages. Please read the Table of Contents diagram inside the front cover and the Preface for more details.

In the context of 500+, real-world examples ranging from individual snippets to 40 large scripts and full implementation case studies, you’ll use the interactive IPython interpreter with code in Jupyter Notebooks to quickly master the latest Python coding idioms. After covering Python Chapters 1—5 and a few key parts of Chapters 6—7, you’ll be able to handle significant portions of the hands-on introductory AI case studies in Chapters 11—16, which are loaded with cool, powerful, contemporary examples. These include natural language processing, data mining Twitter for sentiment analysis, cognitive computing with IBM Watson™, supervised machine learning with classification and regression, unsupervised machine learning with clustering, computer vision through deep learning and convolutional neural networks, deep learning with recurrent neural networks, big data with Hadoop, Spark™ and NoSQL databases, the Internet of Things and more. You’ll also work directly or indirectly with cloud-based services, including Twitter, Google Translate™, IBM Watson, Microsoft Azure, OpenMapQuest, PubNub and more.


Features
  • 500+ hands-on, real-world, live-code examples from snippets to case studies
  • IPython + code in Jupyter Notebooks
  • Library-focused: Uses Python Standard Library and data science libraries to accomplish significant tasks with minimal code
  • Rich Python coverage: Control statements, functions, strings, files, JSON serialization, CSV, exceptions
  • Procedural, functional-style and object-oriented programming
  • Collections: Lists, tuples, dictionaries, sets, NumPy arrays, pandas Series & DataFrames
  • Static, dynamic and interactive visualizations
  • Data experiences with real-world datasets and data sources
  • Intro to Data Science sections: AI, basic stats, simulation, animation, random variables, data wrangling, regression
  • AI, big data and cloud data science case studies: NLP, data mining Twitter, IBM Watson™, machine learning, deep learning, computer vision, Hadoop, Spark™, NoSQL, IoT
  • Open-source libraries: NumPy, pandas, Matplotlib, Seaborn, Folium, SciPy, NLTK, TextBlob, spaCy, Textatistic, Tweepy, scikit-learn, Keras and more.
Register your product for convenient access to downloads, updates, and/or corrections as they become available.
 

Editorial Reviews

___________________________________

Review

“The chapters are clearly written with detailed explanations of the example code. The modular structure, wide range of contemporary data science topics, and code in companion Jupyter notebooks make this a fantastic resource for readers of a variety of backgrounds. Fabulous Big Data chapter–it covers all of the relevant programs and platforms. Great Watson chapter! The chapter provides a great overview of the Watson applications. Also, your translation examples are great because they provide an ‘instant reward’–it’s very satisfying to implement a task and receive results so quickly. Machine Learning is a huge topic, and the chapter serves as a great introduction. I loved the California housing data example–very relevant for business analytics. The chapter was visually stunning.” 

–Alison Sanchez, Assistant Professor in Economics, University of San Diego

 

“A great introduction to Big Data concepts, notably Hadoop, Spark, and IoT. The examples are extremely realistic and practical. The authors do an excellent job of combining programming and data science topics. The material is presented in digestible sections accompanied by engaging interactive examples. Nearly all concepts are accompanied by a worked-out example. A comprehensive overview of object-oriented programming in Python–the use of card image graphics is sure to engage the reader.”

–Garrett Dancik, Eastern Connecticut State University

 

“Covers some of the most modern Python syntax approaches and introduces community standards for style and documentation. The machine learning chapter does a great job of walking people through the boilerplate code needed for ML in Python. The case studies accomplish this really well. The later examples are so visual. Many of the model evaluation tasks make for really good programming practice. I can see readers feeling really excited about playing with the animations.”

–Elizabeth Wickes, Lecturer, School of Information Sciences, University of Illinois at Urbana-Champaign

 

“An engaging, highly accessible book that will foster curiosity and motivate beginning data scientists to develop essential foundations in Python programming, statistics, data manipulation, working with APIs, data visualization, machine learning, cloud computing, and more. Great walkthrough of the Twitter APIs–sentiment analysis piece is very useful. I’ve taken several classes that cover natural language processing and this is the first time the tools and concepts have been explained so clearly. I appreciate the discussion of serialization with JSON and pickling and when to use one or the other–with an emphasis on using JSON over pickle–good to know there’s a better, safer way!”

–Jamie Whitacre, Data Science Consultant

 

About the Author

___________________________________

Paul Deitel, CEO and Chief Technical Officer of Deitel & Associates, Inc., is a graduate of MIT, where he studied Information Technology. Through Deitel & Associates, Inc., he has delivered hundreds of programming courses worldwide to clients, including Cisco, IBM, Siemens, Sun Microsystems, Dell, Fidelity, NASA at the Kennedy Space Center, the National Severe Storm Laboratory, White Sands Missile Range, Rogue Wave Software, Boeing, SunGard Higher Education, Nortel Networks, Puma, iRobot, Invensys and many more. He and his co-author, Dr. Harvey M. Deitel, are the world’s best-selling programming-language textbook/professional book/video authors.

 

Dr. Harvey Deitel, Chairman and Chief Strategy Officer of Deitel & Associates, Inc., has over 50 years of experience in the computer field. Dr. Deitel earned B.S. and M.S. degrees in Electrical Engineering from MIT and a Ph.D. in Mathematics from Boston University. He has extensive college teaching experience, including earning tenure and serving as the Chairman of the Computer Science Department at Boston College before founding Deitel & Associates, Inc., in 1991 with his son, Paul. The Deitels’ publications have earned international recognition, with translations published in Japanese, German, Russian, Spanish, French, Polish, Italian, Simplified Chinese, Traditional Chinese, Korean, Portuguese, Greek, Urdu and Turkish. Dr. Deitel has delivered hundreds of programming courses to corporate, academic, government and military clients.

Leave a Reply

Your email address will not be published. Required fields are marked *